

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016

Normal Season Exam – Theoretical Part V1

(theoretical part duration - 30 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (70 points). This answer sheet will be collected 30 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

_Section:____Number:__

Each of the following 4 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 5 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1. Let A, B, C be events of a sample space Ω .

	Г
If A, B are mutually exclusive events and $P(B) > 0$, then $P(A B) = P(B)$.	
$P[A \cup (A' \cap B)] = P(A \cup B)$	
If $B \subset C$, then $P(C \cap B') = P(C) - P(B \cap C)$	
Let events A_1 , A_2 and A_3 be such that $P(A_1) = 0.4$, $P(A_2) = 0.2$, $P(A_3) = 0.3$ and	
$P(A_i \cap A_j) = 0$ i, j = 1, 2, 3. Then A_1 , A_2 and A_3 are a partition of sample space S.	

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

	Т	F
If X is a discrete random variable, then $F_X(x) \ge P(X < x)$ for any $x \in \mathbb{R}$		
Let $Y = \varphi(X)$ be a function of X. If X is a continuous random variable, then Y can be a discrete random variable.		
If X is a continuous random variable the expected value of X does not always exist.		
If <i>X</i> is discrete, for any $a, b \in \mathbb{R}$, $a < b$, $P(a \le X \le b) = F_X(b) - F_X(a - 0)$.		

3. Let (X, Y) be a two-dimensional random variable.

	F
If (X, Y) is a continuous two-dimensional random variable and $E[X Y] = E[X]$, then X, Y are independent random variables	
If $Cov(X, Y) = 0$, then we can say that X and Y are independent random variables	
If (X, Y) are independent random variables and $M_X(t), M_Y(t)$ their moment generating functions, then $M_{X+Y}(t) = M_X(t) + M_Y(t)$	
If X and Y are independent random variables with a common distribution, then Var(2X - Y) = 5 Var(X)	

- .	т	F
Let $X_1 \sim Po(\lambda_1) \in X_2 \sim Po(\lambda_2)$ $\lambda_1 \neq \lambda_2$, be independent random variables, then the		
random variable $W = X_1 + X_2$ follows a Poisson distribution with mean $\lambda_1 + \lambda_2$.		
Let $(X_1, X_2,, X_n)$ be a random sample of size $n>2$ selected from a population X with		
finite mean and $ar{X}_1$ and $ar{X}_2$ be sample means from samples with dimension n of		
population X. Then \bar{X}_1, \bar{X}_2 have a common distribution.		
Let $(X_1, X_2,, X_n)$ be a random sample of size <i>n</i> >2 selected from a population <i>X</i> .		
Then, $P(X_1 > x, X_2 > x) = [1 - F_X(x)]^2$ for any value of $x \in \mathbb{R}$		
If random variable $X \sim B(10, 0.1)$, then the distribution of X can be well approximated by		
a Po(1) distribution,		

The following questions worth 150 points each and should be answered in the space provided. The answers should be duly formalized and justified.

5. Let *X* be a random variable such that P(X = 1) + P(X = -1) = 1. Show that $E[X^2] = 1$

6. Se $X \sim Po(\lambda)$, **demonstre** que a sua média é igual a $\frac{P(X=1)}{P(X=0)}$ e a sua variância é igual ao dobro de $\frac{P(X=2)}{P(X=1)}$.

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016

Normal Season Exam – Theoretical Part V1

(theoretical part duration – 30 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (70 points). This answer sheet will be collected 15 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:

__Section:____Number:___

Each of the following 4 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 5 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross(X):

1. Let *A*, *B*, *C* be events of a sample space Ω .

	F
If A, B are independent events and $P(B) > 0$, then $P(A B) = P(B)$.	
$P(A \cap B') = P(A) - P(A \cap B)$	
If $C \subset B$, then $P(C \cap B') = 0$	
Let events A_1 , A_2 and A_3 be such that $P(A_1) = 0.6$, $P(A_2) = 0.2$, $P(A_3) = 0.3$. Then A_1 , A_2 and A_3 are a partition of sample space <i>S</i> .	

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

	Т	F
If X is a continuous random variable, then $F_X(x) \ge P(X < x)$ for any $x \in \mathbb{R}$		
Let $Y = \varphi(X)$ be a function of X. If X is a mixed random variable, then Y can be a continuous random variable.		
If X is a discrete random variable the expected value of X exists always.		
If X is discrete, for any $a, b \in \mathbb{R}$, $a < b$, $P(a < X < b) = F_X(b - 0) - F_X(a)$.		

3. Let (*X*, *Y*)be a two-dimensional random variable.

	F
If (X, Y) is a discrete two-dimensional random variable and $E[X Y = y_1] \neq E[X Y = y_2]$ ($y_i \in D_Y$) then <i>X</i> , <i>Y</i> are dependent random variables	
If $Cov(X, Y) = 0$, then we can say that X and Y are dependent random variables	
If (X, Y) are independent random variables and $M_X(t), M_Y(t)$ their moment generating functions, then $M_{X+Y}(t) = M_X(t) * M_Y(t)$	
If X and Y are independent random variables with a common distribution, then	
Var(X - 2Y) = 5 Var(X)	

UNIVERSIDADE De lisboa

LISBOA

ISBOA.

4.	т	F
Let $Y_1 \sim Bi(n, \theta_1)$ and $Y_2 \sim Bi(n, \theta_2)$ $\theta_1 \neq \theta_2$, be independent random variables, then the random variable $V = Y_1 + Y_2 \sim Bi(2n, \theta_1 + \theta_2)$	•	
Let $(X_1, X_2,, X_n)$ be a random sample of size $n>2$ selected from a population X and \overline{X}_1 and \overline{X}_2 be sample means from samples with dimension n of population X . Then \overline{X}_1 and \overline{X}_2 have the same distribution.		
Let $(X_1, X_2,, X_n)$ be a random sample of size $n>2$ selected from a population X with unknown parameters. Then, the larger the sample size, n , the larger $E[\overline{X}]$		
If $X \sim B(1000, 0.8)$, then the distribution of X can be well approximated by a $Po(800)$ distribution,		

The following questions worth 150 points each and should be answered in the space provided. The answers should be duly formalized and justified.

5. Let *X* be a random variable such that P(X = 1) + P(X = -1) = 1. Show that $E[X^2] = 1$

6. Se $X \sim Po(\lambda)$, **demonstre** que a sua média é igual a $\frac{P(X=1)}{P(X=0)}$ e a sua variância é igual ao dobro de $\frac{P(X=2)}{P(X=1)}$.

Nº:

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 04/01/2016 Normal Season Exam – Practical Part

(practical part duration – 90 minutes)

This is Part 2: 130 points. The answers to the multiple-choice questions should be given by signalling with an
X the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.
Name:

		Don't	write here		
1a.(10)	2a.(20)	3a.(10)	3c.(15)	4a.(15)	T:
1b.(15)	2b.(15)	3b.(15)		4b.(15)	P:
					<u></u>

- 1. To forecast the daily occurrence of rain (event **R**), three levels of atmospheric pressure (high **H**, medium **M** and low **L**) are considered. The probability of each of the three atmospheric pressure levels are respectively P(L) = 0.3, P(M) = 0.4, P(H) = 0.3. Furthermore it is known that the atmospheric pressure is low in 60% of the rainy days and the probability of rain is 20%.
 - a) In a week, 7 days, compute the probability that atmospheric pressure is high in less than 2 days (signal with an X the right answer,)

(i) 0.3177 □ (ii) 0.3294 □ (iii) 0.2471 □ (iv) 0.6471 □

b) In a day with low atmospheric pressure what is the probability of rain?

2. The daily quantities (tons) of raw materials *X* and *Y* embodied in some product are random variables and the function given by:

 $f_{X,Y}(x, y) = k$ (0 < x < 2; 1 < y < 3)

a) Find the value of k such that $f_{X,Y}(x, y)$ is the joint probability density function of the random variable (X, Y). Are the variables independent?

b) Find the average quantity of raw material *X* embodied in the product in a day when 2 tons of raw material *Y* was used.

a) The probability that more than 7 calls are received in half an hour is:

(i) 0.9089 □ (ii) 0.8829 □ (iii) 0.7932 □ (iv) 0.6761 □

b) Determine the probability that it takes more than 1 hour for the call center to receive 10 calls.

c) If a random sample of 5 periods of 10 minutes were randomly selected find the probability that the maximum number of complaints is lower than 4.

4. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in **absolute value**, by less than 5 grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25 grams.

UNIVERSIDADE De lisboa

LISBOA

a) Compute the probability that a package does not meet the standard.

b) A random sample of 10 packages were selected. Determine the maximum value of the sample mean with a probability of 90%.

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 04/01/2016 Normal Season Exam – Practical Part

(practical part duration – 90 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

				Nº:	
1a (10)	2a (20)	Don't 3a (10)	write here	42 (15)	т·
	2b(15)	3h(20)	00.(10)	<i>d</i> b (15)	ь. D.

- 1. To forecast the daily occurrence of rain (event **R**), three levels of atmospheric pressure (high **H**, medium **M** and low **L**) are considered. The probability of each of the three atmospheric pressure levels are respectively P(L) = 0.3, P(M) = 0.4, P(H) = 0.3. Furthermore it is known that the atmospheric pressure is high in 15% of the rainy days and the probability of rain is 20%.
 - **a)** In a week, 7 days, compute the probability that atmospheric pressure is low in less than 3 days (signal with an X the right answer,)

(i) 0.3177 □ (ii) 0.8740 □ (iii) 0.2269 □ (iv) 0.6471 □

b) In a day with high atmospheric pressure what is the probability of rain?

2. The daily quantities (tons) of raw materials *X* and *Y* embodied in some product are random variables and the function given by:

 $f_{X,Y}(x, y) = k$ (0 < x < 2; 1 < y < 3)

a) Find the value of k such that $f_{X,Y}(x, y)$ is the joint probability density function of the random variable (X, Y). Are the variables independent?

b) Find the average quantity of raw material *Y* embodied in the product in a day when 1 ton of raw material *X* was used.

- **3.**The number of complaints received in a call center every 10 minutes has a Poissondistribution with mean 3.
 - a) The probability that more than 10 calls are received in half an hour is:

(i) 0.2940 □ (ii) 0.8682 □ (iii) 0.4126 □ (iv) 0.8814 □

b) Determine the probability that it takes more than 1 hour for the call center to receive 10 calls.

c) If a random sample of 5 periods of 10 minutes were randomly selected find the probability that the maximum number of complaints is lower than 4.

UNIVERSIDADE De lisboa

[Type text]

4. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in **absolute value**, by less than 5 grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25 grams.

a) Compute the probability that a package does not meet the standard.

b) A random sample of 10 packages were selected. Determine the maximum value of the sample mean with a probability of 90%.