STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016
 Normal Season Exam - Theoretical Part V1

(theoretical part duration - 30 minutes)

Abstract

This exam consists of two parts. This is Part 1 - Theoretical (70 points). This answer sheet will be collected 30 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad Section: \qquad Number: \qquad
Each of the following 4 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade obtained in each of the 5 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (\mathbf{T}) or false (\mathbf{F}) by ticking the corresponding box with a cross(X):

1. Let A, B, C be events of a sample space Ω.

If A, B are mutually exclusive events and $P(B)>0$, then $P(A \mid B)=P(B)$.	\mathbf{T}	
$P\left[A \cup\left(A^{\prime} \cap B\right)\right]=P(A \cup B)$		
If $B \subset C$, then $P\left(C \cap B^{\prime}\right)=P(C)-P(B \cap C)$		
Let events A_{1}, A_{2} and A_{3} be such that $P\left(A_{1}\right)=0.4, P\left(A_{2}\right)=0.2, P\left(A_{3}\right)=0.3$ and		
$P\left(A_{i} \cap A_{j}\right)=0 \quad i, j=1,2,3$. Then A_{1}, A_{2} and A_{3} are a partition of sample space S.		

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

If X is a discrete random variable, then $F_{X}(x) \geq P(X<x)$ for any $x \in \mathbb{R}$		\mathbf{T}
Let $Y=\varphi(X)$ be a function of X. If X is a continuous random variable, then Y can be a discrete random variable.		
If X is a continuous random variable the expected value of X does not always exist.		
If X is discrete, for any $a, b \in \mathbb{R}, a<b, P(a \leq X \leq b)=F_{X}(b)-F_{X}(a-0)$.		

3. Let (X, Y) be a two-dimensional random variable.

If (X, Y) is a continuous two-dimensional random variable and $E[X \mid Y]=E[X]$, then X, Y are independent random variables		
If $\operatorname{Cov}(X, Y)=0$, then we can say that X and Y are independent random variables		
If (X, Y) are independent random variables and $M_{X}(t), M_{Y}(t)$ their moment generating functions, then $M_{X+Y}(t)=M_{X}(t)+M_{Y}(t)$		
If X and Y are independent random variables with a common distribution, then		
$\operatorname{Var}(2 X-Y)=5 \operatorname{Var}(X)$		

TIS:BOA
SCHOOL OF
BCONOMICS \&
MANACMMBNT
4.
[Type text]

Let $X_{1} \sim P o\left(\lambda_{1}\right)$ e $X_{2} \sim P o\left(\lambda_{2}\right) \quad \lambda_{1} \neq \lambda_{2}$, be independent random variables, then the random variable $W=X_{1}+X_{2}$ follows a Poisson distribution with mean $\lambda_{1}+\lambda_{2}$.	\mathbf{F}	
Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample of size $n>2$ selected from a population X with finite mean and \bar{X}_{1} and \bar{X}_{2} be sample means from samples with dimension n of population X. Then \bar{X}_{1}, \bar{X}_{2} have a common distribution.		
Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample of size $n>2$ selected from a population X. Then, $P\left(X_{1}>x, X_{2}>x\right)=\left[1-F_{X}(x)\right]^{2}$ for any value of $x \in \mathbb{R}$		
If random variable $X \sim B(10,0.1)$, then the distribution of X can be well approximated by a $P o(1)$ distribution,		

The following questions worth 150 points each and should be answered in the space provided. The answers should be duly formalized and justified.
5. Let X be a random variable such that $P(X=1)+P(X=-1)=1$. Show that $E\left[X^{2}\right]=1$
6. Se $X \sim P o(\lambda)$, demonstre que a sua média é igual a $\frac{P(X=1)}{P(X=0)}$ e a sua variância é igual ao dobro de $\frac{P(X=2)}{P(X=1)}$.

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016
 Normal Season Exam - Theoretical Part V1

(theoretical part duration - 30 minutes)

Abstract

This exam consists of two parts. This is Part 1 - Theoretical (70 points). This answer sheet will be collected 15 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad Section: \qquad Number:

Each of the following 4 groups of multiple-choice questions is worth 10 points. Each question answered correctly is worth 2.5 points; each wrong answer is worth $\mathbf{- 2 . 5}$ points. The grade obtained in each of the 5 groups varies between a minimum of zero and a maximum of 10 points.

Indicate whether the following statements are true (\mathbf{T}) or false (F) by ticking the corresponding box with $a \operatorname{cross}(X)$:

1. Let A, B, C be events of a sample space Ω.

If A, B are independent events and $P(B)>0$, then $P(A \mid B)=P(B)$.		
$P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)$		
If $C \subset B$, then $P\left(C \cap B^{\prime}\right)=0$		
Let events A_{1}, A_{2} and A_{3} be such that $P\left(A_{1}\right)=0.6, P\left(A_{2}\right)=0.2, P\left(A_{3}\right)=0.3$. Then A_{1},		
A_{2} and A_{3} are a partition of sample space S.		

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

If X is a continuous random variable, then $F_{X}(x) \geq P(X<x)$ for any $x \in \mathbb{R}$	T	F
Let $Y=\varphi(X)$ be a function of X. If X is a mixed random variable, then Y can be a continuous random variable.		
If X is a discrete random variable the expected value of X exists always.		
If X is discrete, for any $a, b \in \mathbb{R}, a<b, P(a<X<b)=F_{X}(b-0)-F_{X}(a)$.		

3. Let (X, Y) be a two-dimensional random variable.

If (X, Y) is a discrete two-dimensional random variable and $E\left[X \mid Y=y_{1}\right] \neq$ $E\left[X \mid Y=y_{2}\right] \quad\left(y_{i} \in D_{Y}\right)$ then X, Y are dependent random variables		
If $\operatorname{Cov}(X, Y)=0$, then we can say that X and Y are dependent random variables		
If (X, Y) are independent random variables and $M_{X}(t), M_{Y}(t)$ their moment generating functions, then $M_{X+Y}(t)=M_{X}(t) * M_{Y}(t)$		
If X and Y are independent random variables with a common distribution, then		
$\operatorname{Var}(X-2 Y)=5 \operatorname{Var}(X)$		

4.

Let $Y_{1} \sim \operatorname{Bi}\left(n, \theta_{1}\right)$ and $Y_{2} \sim \operatorname{Bi}\left(n, \theta_{2}\right) \quad \theta_{1} \neq \theta_{2}$, be independent random variables, then the random variable $V=Y_{1}+Y_{2} \sim \operatorname{Bi}\left(2 n, \theta_{1}+\theta_{2}\right)$		
Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample of size $n>2$ selected from a population X and \bar{X}_{1} and \bar{X}_{2} be sample means from samples with dimension n of population X. Then \bar{X}_{1} and \bar{X}_{2} have the same distribution.		
Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample of size $n>2$ selected from a population X with unknown parameters..Then, the larger the sample size, n, the larger $E[\bar{X}]$		
If $X \sim B(1000,0.8)$, then the distribution of X can be well approximated by a $\operatorname{Po}(800)$ distribution,		

The following questions worth 150 points each and should be answered in the space provided. The answers should be duly formalized and justified.
5. Let X be a random variable such that $P(X=1)+P(X=-1)=1$. Show that $E\left[X^{2}\right]=1$
6. Se $X \sim P o(\lambda)$, demonstre que a sua média é igual a $\frac{P(X=1)}{P(X=0)}$ e a sua variância é igual ao dobro de $\frac{P(X=2)}{P(X=1)}$.

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016 Normal Season Exam - Practical Part
(practical part duration - 90 minutes)
This is Part 2: 130 points. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name: \qquad
№:

1a.(10)	Don't write here				
	2a.(20)	3a.(10)	3c.(15)	4a.(15)	T:
1b.(15)	2b.(15)	3b.(15)		4b.(15)	P:

1. To forecast the daily occurrence of rain (event \mathbf{R}), three levels of atmospheric pressure (high \mathbf{H}, medium \mathbf{M} and low \mathbf{L}) are considered. The probability of each of the three atmospheric pressure levels are respectively $P(L)=0.3, P(M)=0.4, P(H)=0.3$. Furthermore it is known that the atmospheric pressure is low in 60% of the rainy days and the probability of rain is 20%.
a) In a week, 7 days, compute the probability that atmospheric pressure is high in less than 2 days (signal with an X the right answer,)
(i) 0.3177
(ii) $0.3294 \square$
(iii) 0.2471
(iv) 0.6471
b) In a day with low atmospheric pressure what is the probability of rain?
2. The daily quantities (tons) of raw materials X and Y embodied in some product are random variables and the function given by:

$$
f_{X, Y}(x, y)=k \quad(0<x<2 ; 1<y<3)
$$

a) Find the value of k such that $f_{X, Y}(x, y)$ is the joint probability density function of the random variable (X, Y). Are the variables independent?
b) Find the average quantity of raw material X embodied in the product in a day when 2 tons of raw material Y was used.
3. The number of complaints received in a call center every 10 minutes follows a Poisson distribution with mean 3.
a) The probability that more than 7 calls are received in half an hour is:
(i) 0.9089
(ii) 0.8829
(iii) 0.7932
(iv) 0.6761
b) Determine the probability that it takes more than 1 hour for the call center to receive 10 calls.
c) If a random sample of 5 periods of 10 minutes were randomly selected find the probability that the maximum number of complaints is lower than 4.
4. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in absolute value, by less than 5 grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25 grams.
a) Compute the probability that a package does not meet the standard.
b) A random sample of 10 packages were selected. Determine the maximum value of the sample mean with a probability of 90%.

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 04/01/2016 Normal Season Exam - Practical Part
 (practical part duration - 90 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the space provided.
Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth - 2.5 points.

Name:
№: \qquad

Don't write here					
1a.(10)	2a.(20)	3a.(10)	3c.(10)	4a.(15)	T:
1b.(15)	2b.(15)	3b.(20)		4b.(15)	P :

1. To forecast the daily occurrence of rain (event \mathbf{R}), three levels of atmospheric pressure (high \mathbf{H}, medium \mathbf{M} and low \mathbf{L}) are considered. The probability of each of the three atmospheric pressure levels are respectively $P(L)=0.3, P(M)=0.4, P(H)=0.3$. Furthermore it is known that the atmospheric pressure is high in 15% of the rainy days and the probability of rain is 20%.
a) In a week, 7 days, compute the probability that atmospheric pressure is low in less than 3 days (signal with an X the right answer,)
(i) 0.3177
(ii) 0.8740
(iii) 0.2269
(iv) 0.6471
b) In a day with high atmospheric pressure what is the probability of rain?
2. The daily quantities (tons) of raw materials X and Y embodied in some product are random variables and the function given by:

$$
f_{X, Y}(x, y)=k \quad(0<x<2 ; 1<y<3)
$$

a) Find the value of k such that $f_{X, Y}(x, y)$ is the joint probability density function of the random variable (X, Y). Are the variables independent?
b) Find the average quantity of raw material Y embodied in the product in a day when 1 ton of raw material X was used.

SCFBOOT OF
BCONOMICS \&
MANAGㅍMNNㄴ
3.The number of complaints received in a call center every 10 minutes has a Poissondistribution with mean 3.
a) The probability that more than 10 calls are received in half an hour is:
(i) 0.2940
(ii) 0.8682
(iii) 0.4126
(iv) 0.8814
b) Determine the probability that it takes more than 1 hour for the call center to receive 10 calls.
c) If a random sample of 5 periods of 10 minutes were randomly selected find the probability that the maximum number of complaints is lower than 4.
4. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in absolute value, by less than 5 grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25 grams.
a) Compute the probability that a package does not meet the standard.
b) A random sample of 10 packages were selected. Determine the maximum value of the sample mean with a probability of 90%.

